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The present study aims to analyse a two-dimensional problem of displacements in theory
of thermal stresses for multicomponent, multi-layered periodic composites. The model
equations are obtained within the framework of the tolerance modelling procedure. These
equations allow to determine the distribution of displacements caused by the temperature
field in the theory of thermal stresses. The paper presents an example of a solution of
a boundary value problem.
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1. Introduction

The object of the presented study is tolerance modelling for thermal stresses in
a multicomponent, multi-layered periodical structure. Tolerance modelling (the tol-
erance averaging technique) for two-component structures was proposed by Woźniak
[12, 13]. Applications of this theory in thermomechanics can be found in monogra-
phies by Woźniak and Wierzbicki [14], Woźniak, Michalak and Jȩdrysiak [15] as
well as Woźniak et al. [16] and for example in paper by Wierzbicki, Woźniak and
Woźniak [8]. Tolerance and asymptotic models of thermo-elasticity problems for
two-component transversally graded laminates were proposed by Jȩdrysiak [2] as
well as Pazera and Jȩdrysiak [5]. A similar problem was analysed by Ostrowski
[4] for a two-component longitudinally graded hollow cylinder. Thermal stresses
in periodic two-component multi-layered structures were considered for example by
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Bagdasaryan [1] and using the theory of microlocal parameters by Matysiak [3].
The basic difference between the modelling of multicomponent composites and the
modelling of two-component composites is the new form of the shape function which
is called an oscillating micro-shape function. The idea of modelling for multi-layered,
multicomponent composites was developed byWoźniak [10, 11]. It was used for peri-
odic structures, e.g. for problems of heat conduction, by Wa̧growska and Szlachetka
[6] and for elastostatics problems by Wa̧growska, Szlachetka and Bagdasaryan [7].
The aim of this paper is to present model equations for a two-dimensional problem
of thermal stresses in temperature and displacements using the forms of oscillating
micro-shape functions introduced in [6], [7], and to present certain solutions of
boundary problems.

2. Object of analysis

The object of analysis is a periodic, multicomponent, multi-layered, thermoelastic
composite which occupies a region Ω ≡ (0,L1) × (0,L2) × (0,L3) in the physical
space and consists of a large number N

(
1
N << 1

)
of layers with constant thickness

η, η = L1

N .
Each layer is composed of P sublayers made of M homogeneous, orthotropic, per-
fectly combined linear thermoelastic materials, where P ≥ M . Let us assume that
the axes of orthotropy of the components coincide with the axes of the coordinate
system Ox1x2x3. Figure 1 presents the scheme of the considered composite.

Figure 1 The scheme of a multicomponent multi-layered periodic composite and its periodic layer

For the two-dimensional problem the thermoelastic material properties in the p-th,
p = 1, ...,P , orthotropic sublayer are described by the values of the elastic modulus,
heat conduction and thermal expansion tensors:

Cp =

 C1111
p C1122

p 0
C2222

p 0
C1212

p

 Kp =

[
K11

p 0
0 K22

p

]

Dp =

[
D11

p 0
0 D22

p

]
p = 1, ..,P
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Moreover, let φp, p = 1, ...,P , are the fractional functions, such that φ1+...+φP = 1.
The thickness of the p-th (p = 1, ..,P ) sublayer in each layer is equal to ηp = ηφp.
Introduce the decomposition of the i-th interval of periodicity into P subintervals
∆i

p which are defined as:

∆i
p ≡

(
η (i− 1) +

p−1∑
k=1

φkηk, η (i− 1) +

p∑
k=1

φkηk

)
, p = 1,2, ...,P, i = 1,2, ...,N

Then the set occupied by the p-th sublayers in this composite can be described as
follows:

Ωp =

N∪
i=1

∆i
p × (0,L2)× (0,L3) , p = 1,2, ...,P

For the stationary, two-dimensional problems given within the framework of the
thermal stresses theory, the temperature and the displacements depend only on two
variables x1 and x2, where x1 ∈ (0, L1), x2 ∈ (0, L2).
Assuming that the body forces per unit volume are equal to zero, the equations of
equilibrium for a two-dimensional problem take the form:(

Cijkluk,l
)
,j =

(
Gijθ

)
,j (1)(

Kklθ,l
)
,k = 0 (2)

where θ is the temperature field, ui are components of the displacement field and
Gij = CijklDkl, i, j, k, l = 1, 2. These are the equations which allow to determine
the displacements field caused by the temperature field.
For orthotropic, homogeneous components of the composite above equations take
the form:

C1111u1,11 +
(
C1122 + C1212

)
u2,12 + C1212u1,22 = G11θ,1 (3)

C1212u2,11 +
(
C1122 + C1212

)
u1,12 + C2222u2,22 = G22θ,2 (4)

K11θ,11 +K
22θ,22 = 0 (5)

where:
Cijkl = Cijkl

p ,Gkl = Gkl
p and Kkl = Kkl

p when (x1, x2) ∈
∪N

i=1 ∆
i
p × (0,L2) ,

p = 1,2, ...,P , i = 1,2, ...,N .
Equations (3-5) are a system of partial differential equations with discontinuous
and highly oscillating coefficients. There are many methods of finding the approx-
imated solution of these equations. Among them the following methods can be
distinguished: asymptotic homogenization, modelling with microlocal parameters
and tolerance modelling. This paper applies the tolerance modelling method.

3. Modelling concepts

In the process of tolerance modelling for periodic composites notions of an averaging
operator, slowly varying function (SV ), and tolerance averaging approximation are



812 Bagdasaryan, V., Wa̧growska, M.and Szlachetka, O.

needed. They can be found for example in [16] and [7]. The averaging operator for
f ∈ L2((0, L1)) is defined by:

⟨f⟩ (x) ≡ 1

η

∫ x+η/2

x−η/2

f (z) dz, x ∈
(η
2
, L1 − η

2

)
(6)

Let denote an arbitrary convex set in the space Rm as Π and an arbitrary real-valued
function f ∈ C1 (Π). Define the tolerance parameter d ≡ (η,δ0, δ1) as a triplet of
real positive numbers. The notation ∂j ≡ ∂

∂xj
, j = 1, ...,m will be used.

Function f ∈ C1 (Π) is slowly varying function with respect to parameter d
(f ∈ SV1

d (Π))⇔ (∀ (x,y) ∈ Π2 ∥x− y∥ ≤ η ⇒ (|f (x)− f (y)| ≤ δ 0

∧ |∂jf (x)− ∂jf (y)| ≤ δ1) ∧ (∀x ∈ Π η |∂jf (x)| ≤ δ0), ∀ j = 1, ...,m)
If f ∈ L2

(
−η

2 ,
η
2

)
and F ∈ SV1

d ((0, L1)) then the tolerance averaging approximation
of ⟨fF ⟩T (x), ⟨f∂1F ⟩T (x) is given by⟨f⟩ (x)F (x) and ⟨f⟩ (x) ∂1F (x), respectively.

The main role in the modelling process for temperature and displacements in
thermal stresses theory for multicomponent composites is played by oscillating
micro-shape functions, which are defined separately for the heat conduction prob-
lem (function γθ (·)) and the elasticity problem (function γu (·)). These functions
are piecewise linear, with values on the interfaces between sublayers of a periodicity
layer given by:

γθp = γθp−1 + ηφp

(
K11

0

K11
p

− 1

)
, p = 1,2, ...,P

where K11
0 ≡

(∑P
i=1

φi

K11
i

)−1

and
⟨
γθ
⟩
= 0

γup = γup−1 + ηφp

(
C1111

0

C1111
p

− 1

)
, p = 1,2, ...,P

where C1111
0 ≡

(∑P
i=1

φi

C1111
i

)−1

and ⟨γu⟩ = 0

A scheme of a general oscillating micro-shape function γ (which could be γθ or γu)
for a symmetric, three-component structure is presented in Fig. 2.

4. Modelling procedure and modelling equations for a two-dimensional
problem

The process of tolerance modelling is based on two assumptions. The first as-
sumption says that the temperature field θ (·) and the displacement field u (·) are
approximated by θ̃ (·) and ũ (·) respectively in the form, [16]:

θ (x1, x2) ≈ θ̃ (x1, x2) = ϑ (x1, x2) + γθ (x1)ψ (x1, x2) (7)

u (x1, x2) ≈ ũ (x1, x2) = w (x1, x2) + γu (x1)v (x1, x2) (8)

Fields ϑ (·,x2) , ψ (·,x2) , w (·,x2) , v (·,x2) ∈ SV 1
d ((0,L1)) are unknown fields,

which are called macro-temperature, the amplitude of fluctuation of temperature,
macro-displacement and the amplitude of fluctuation of displacement respectively.
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Figure 2 The scheme of an oscillating micro-shape function for a three-component periodic com-
posite

Before formulating the second assumption let us define the residual fields of θ̃ (·)
and ũ (·) given by (7) and (8), [16]:

rθ =
(
Kkl

(
ϑ+ γθψ

)
,l
)
,k (9)

rui =

(
Cijkl 1

2
((wk + γuvk),l +(wl + γuvl),k )

)
,j −

(
Gij(ϑ+ γθψ)

)
,j (10)

where i, j, k, l = 1, 2.

The second assumption can be written with formulas:⟨
rθ
⟩
T
= 0,

⟨
γθ rθ

⟩
T
= 0 (11)

⟨rui ⟩T = 0, ⟨γu rui ⟩T = 0 (12)

where i = 1, 2.

From the conditions (11) and Eqs. (7) and (9) the equations for ϑ (·) and ψ (·) are
received:⟨(

Kkl
(
ϑ+ γθψ

)
,l
)
,k
⟩
T
=
⟨(
Kklϑ,l

)
,k
⟩
T
+
⟨(
Kklγθ,l ψ

)
,k
⟩
T

+
⟨(
Kklγθψ,l

)
,k
⟩
T
= 0⟨

γθ
(
Kkl

(
ϑ+ γθψ

)
,l
)
,k
⟩
T
=
⟨
γθ
(
Kklϑ,l

)
,k
⟩
T
+
⟨
γθ
(
Kklγθ,l ψ

)
,k
⟩
T

+
⟨
γθ
(
Kklγθψ,l

)
,k
⟩
T
= 0

Remembering the definition of tolerance averaging approximation and the fact that⟨
γθ
⟩
= 0,

⟨
Kklγθ

⟩
= 0 and that ϑ (·,x2) , ψ (·,x2) ∈ SV 1

d ((0,L1))it can be proved
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that: ⟨(
Kklϑ,l

)
,k
⟩
T
=
⟨
Kkl

⟩
ϑ,lk

⟨(
Kklγθ,l ψ

)
,k
⟩
T
=
⟨
Kklγθ,l

⟩
ψk⟨(

Kklγθψ,l
)
,k
⟩
T
=
⟨(
Kklγθ

)
ψ,

lk

⟩
= 0⟨

γθ
(
Kklϑ,l

)
,k
⟩
T
=
⟨(
γθKklϑ,l

)
,k
⟩
T
−
⟨
γθ,kK

klϑ,l
⟩
T
= −

⟨
γθ,kK

kl
⟩
ϑ,l⟨

γθ
(
Kklγθ,l ψ

)
,k
⟩
T
=
⟨(
γθKklγθ,l ψ

)
,k
⟩
T
−
⟨(
γθ,kK

klγθ,l ψ
)⟩

T

= −
⟨
γθ,kK

klγθ,l
⟩
ψ⟨

γθ
(
Kklγθψ,l

)
,k
⟩
T
=
⟨(
γθKklγθψ,l

)
,k
⟩
T
−
⟨
γθ,kK

klγθψ,l
⟩
T

=
⟨((

γθ
)2
Kkl

)⟩
ψ,kl

This procedure yields the equations, [15]:⟨
K11

⟩
ϑ,11 +

⟨
K22

⟩
ϑ,22 +

⟨
K11γθ,1

⟩
ψ,1 = 0 (13)⟨

K22
(
γθ
)2⟩

ψ,22 −
⟨
K11

(
γθ,1

)2⟩
ψ −

⟨
K11γθ,1

⟩
ϑ,1 = 0 (14)

Similarly, inserting Eqs. (8) and (10) to Eqs. (12) and considering Eq. (6) and
the fact that ⟨γu ⟩ = 0,

⟨
Cijklγu

⟩
= 0and that w (·,x2) , v (·,x2) ∈ SV 1

d ((0,L1)) the
second group of model equations take the form, [15]:⟨

C1111
⟩
w1,11 +

⟨
C1111γu,1

⟩
v1,1 +

⟨
C1122

⟩
w2,21 +

⟨
C1212

⟩
w2,12

+
⟨
C1212γu,1

⟩
v2,2 +

⟨
C1212

⟩
w1,22 =

⟨
G11

⟩
ϑ,1

(15)

−
⟨
C1111γu,1

⟩
w1,1 −

⟨
C1111 (γu,1 )

2
⟩
v1 +

⟨
C1111 (γu)

2
⟩
v1,11

−
⟨
C1122γu,1

⟩
w2,2 +

⟨
C1122 (γu)

2
⟩
v2,21 +

⟨
C1212 (γu)

2
⟩
v2,12

+
⟨
C1212 (γu)

2
⟩
v1,22 = −

⟨
G11γθ,1

⟩
ϑ+

⟨
G11

(
γθ
)2⟩

ψ,1

(16)

⟨
C1212

⟩
w2,11 +

⟨
C1212γu,1

⟩
v2,1 +

⟨
C1212

⟩
w1,21 +

⟨
C1122

⟩
w1,12

+
⟨
C1122γu,1

⟩
v1,2 +

⟨
C2222

⟩
w2,22 =

⟨
G22

⟩
ϑ,2

(17)

−
⟨
C1212γu,1

⟩
w2,1 −

⟨
C1212 (γu,1 )

2
⟩
v2 +

⟨
C1212 (γu)

2
⟩
v2,11

−
⟨
C1212γu,1

⟩
w1,2 +

⟨
C1212 (γu)

2
⟩
v1,21 +

⟨
C1122 (γu)

2
⟩
v1,12

+
⟨
C2222 (γu)

2
⟩
v2,22 =

⟨
G22

(
γθ
)2⟩

ψ,2

(18)

The system of partial differential Eqs. (13) – (18) with (7) and (8) with boundary
condictions for the temperature and the displacements represent what will be called
the standard tolerance model for a thermal stresses problem.
It should be emphasized that the system of Eqs. (13) – (18) obtained in the process
of tolerance modelling has constant coefficients in contrast to the Eqs. (3) – (5).
The underlined components in Eqs. (14), (16) and (18) depend on the length
parameter η. If η → 0, then these components vanish. From Eq. (14) it follows
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that ψ = −
⟨
K11γθ,1

⟩
ϑ,1

⟨
K11

(
γθ,1

)2⟩−1

and from Eqs. (16) and (18) that:

v1 =

⟨
G11γθ,1

⟩
ϑ−

⟨
C1111γu,1

⟩
w1,1 +

⟨
C1122γu,1

⟩
w2,2⟨

C1111
(
γu,1
)2⟩

v2 = −
⟨
C1212γu,1

⟩
(w1,2 + w2,1)⟨

C1212 (γu,1 )
2
⟩

In view of above determined amplitudes of fluctuation of temerature (ψ) and dis-
placements (v1 and v2), Eqs. (13), (15) and (17) take the form:

K11
0 ϑ,11 +

⟨
K22

⟩
ϑ,22 = 0 (19)

C1111
0 w1,11 +

(
C̃1122 + C1212

0

)
w2,12 + C1212

0 w1,22 = G11
0 ϑ,1 (20)

C1212
0 w2,11 +

(
C1212

0 + C̃1122
)
w1,12 + C̃2222w2,22 = G22

0 ϑ,2 (21)

with constant coefficients:

K
11

0 =
⟨
K11

⟩
−
(⟨
K11γθ,1

⟩)2⟨
K11 (γθ,1 )

2
⟩

C
1111

0 =
⟨
C1111

⟩
−
(⟨
C1111γu,1

⟩)2⟨
C1111 (γu,1 )

2
⟩

C̃1122 =
⟨
C1122

⟩
−
⟨
C1111γu,1

⟩ ⟨
C1122γu,1

⟩⟨
C1111 (γu,1 )

2
⟩

C
1212

0 =
⟨
C1212

⟩
−
(⟨
C1212γu,1

⟩)2⟨
C1212 (γu,1 )

2
⟩

C̃2222 =
⟨
C2222

⟩
−
(⟨
C1122γu,1

⟩)2⟨
C1111 (γu,1 )

2
⟩

G11
0 =

⟨
G11

⟩
−
⟨
C1111γu,1

⟩ ⟨
G11γθ,1

⟩⟨
C1111 (γu,1 )

2
⟩

G22
0 =

⟨
G22

⟩
−
⟨
C1122γu,1

⟩ ⟨
G22γθ,1

⟩⟨
C1111 (γu,1 )

2
⟩
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5. Example

In this section the distribution of an approximate displacement field caused by given
temperature load for multicomponent multi-layered periodic composite is presented.
Unknown temperature and displacements are calculated within the framework of
the theory of thermal stresses using Eqs. (19) – (21). It is assumed that all materials
of the discussed composites are homogeneous and isotropic, so the values of heat and
elastic modules are reduced to: K11 = K22 = K, C1111 = C2222 = 2µ+λ, C1122 =
λ, C1212 = µ, G11 = G22 = G = (3λ+ 2µ)αt where K is the coefficient of heat
conduction, λ, µ are Lamé parameters and αt is the coefficient of thermal expansion.
Let us assume that the composite occupies the region Ω ≡ (0,L1) × (0,L2), where
L1 = 1.2 [m], L2 = 1 [m] and is composed of N = 12 layers with constant thicknesses
η = 0.1 [m]. It means that the thickness of the periodicity layer is equal to 0.1 [m].
The periodicity layer consists of five sublayers made of three different materials.
Thicknesses of sublayers “1”, “5”, are equal to 0, 1 η, thicknesses of sublayers “2”,
“4” are equal to 0, 2 η and the thickness of sublayer “3” is equal to 0, 4 η. The
sublayers made of the same material are distributed symmetrically with respect to
the midplane of the periodicity layer. The parameters related to the corresponding
sublayers in the considered case are shown in Tab. 1.
The graphs of the oscillating micro-shape functions γθ (·) and γu (·) in the period-
icity layer for the considered example are shown in Fig. 3. It should be noted that
if sublayers made of the same material are symmetrically distributed with respect
to the midplane of the periodicity layer, the graph of the oscillating micro-shape
function is antisymmetric with respect to this midplane and that the oscillating
micro-shape function is equal to zero on the edges of the periodicity layer.

Table 1 The parameters related to the corresponding sublayers in the considered case

Sublayer 1 2 3 4 5
K [W/mK] 35 200 380 200 35
λ (·1010) [Pa] 4.583 5.108 9.515 5.108 4.583
µ (·1010) [Pa] 0.625 2.632 4.478 2.632 0.625
αt (·10−5) [1/K] 2.9 2.3 1.65 2.3 2.9

a) b)

Figure 3 Graphs of the oscillating micro-shape functions in periodicity layer a) γθ (·), b) γu (·)
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The boundary conditions for the displacements in the presented case are:

ϑ(0, x2) = f1 (x2), ϑ(x1, 0) = f2 (x1), ϑ(L1, x2) = 0, ϑ(x1, L2) = 0, w1(0, x2) = 0,
w1(L1, x2) = 0, w1(x1, 0) = 0, w1(x1, L2) = 0 and w2(0, x2) = 0, w2(L1, x2) = 0,

w2(x1, 0) = 0, w2(x1, L2) = 0, where f1(x2) = ϑ0 sin
(

π x2

L2

)
, f2(x1) = ϑ0 sin

(
π x1

L1

)
,

ϑ0 = 400 [K].

The distributions of the macro-temperature ϑ and the temperature θ̃ are shown in
Fig. 4. The macro-displacements w1 and w2, as well as displacements ũ1 and ũ2 are
shown in Fig. 5 and Fig. 6, respectively. Figure 7 presents the cross-sections of the
macro-displacements w1 and w2, as well as displacements ũ1and ũ2 for x2 = 0.1L2,
x2 = 0.25L2 and x2 = 0.5L2.

a) b)

Figure 4 The distributions of a) macro-temperature ϑ, and b) approximated temperature θ̃

a) b)

Figure 5 The distributions of the macro-displacements a) w1 , b) w2
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a) b)

Figure 6 The distributions of the approximated displacements a) ũ1, b) ũ2

a) b)

Figure 7 The distributions of the approximated displacements ũ1 and ũ2 (the continuous line) and
macro-displacements w1 and w2 (the dashed line) for x2 = 0.1L2 – the light grey line, x2 = 0.25L2

– the dark grey line, x2 = 0.5L2 – the black line

6. Conclusions

Introducing oscillating micro-shape functions give the possibility to modelling for
multicomponent, multi-layered periodic composites. These functions do not depend
only on the composite’s geometry but also on the material properties of individual
components. This fact gives the odds of allow to pass form a non-homogeneous
structure to a homogeneous one. Presented model equations can be also used for
two-component structures. It has to be emphesised that for thermoelasticity prob-
lems two different oscillating micro-shape functions must be used – for temperature
and for displacements.

In the presented paper the distribution of temperature and displacement were
received. The obtained model equations gives the possibility to determine the stresse
from the known constitutive relations for theory of thermal stresses.
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